4.
Морфофункциональные системы организма

Принято выделять следующие системы организма:

Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. Кости детей более эластичны и упруги: в них преобладают органические вещества; кости же пожилых людей более хрупки: они содержат большое количество неорганических веществ.

Рассмотрим некоторые из них.

4.1.
Костная система и ее функции

У человека более 200 костей (85 парных и 36 непарных), которые в зависимости от формы и функций делятся на:

В каждой кости содержатся все виды тканей, но преобладает костная, представляющая разновидность соединительной ткани. В состав кости входят органические и неорганические вещества. Неорганические вещества (65—70% сухой массы кости) — это в основном фосфор и кальций. Органические (30 — 35%) — это клетки кости, коллагеновые волокна.

Эластичность, упругость костей зависит от наличия в них органических веществ, а твердость обеспечивается минеральными солями. Кости детей более эластичны и упруги: в них преобладают органические вещества; кости же пожилых людей более хрупки: они содержат большое количество неорганических веществ.

На рост и формирование костей существенное влияние оказывают социально-экономические факторы: питание, окружающая среда и т.д. Дефицит питательных веществ, солей или нарушение обменных процессов, связанных с синтезом белка, незамедлительно отражаются на росте костей. Недостаток витаминов С, D, кальция или фосфора нарушает естественный процесс обызвествления и синтеза белка в костях, делает их более хрупкими. На изменение костей влияют и физические нагрузки. При систематическом выполнении значительных по объему и интенсивности статических и динамических упражнений кости становятся более массивными, в местах прикрепления мышц формируются хорошо выраженные утолщения — костные выступы, бугры и гребни. Происходит внутренняя перестройка компактного костного вещества, увеличиваются количество и размеры костных клеток, кости становятся значительно прочнее. Правильно организованная физическая нагрузка при выполнении силовых и скоростно-силовых упражнений способствует замедлению процесса старения костей.

Все кости человека соединены посредством суставов, связок и сухожилий.

При систематических занятиях физическими упражнениями и спортом суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И, наоборот, при отсутствии движений разрыхляется суставной хрящ и изменяются суставные поверхности, сочленяющие кости, появляются болевые ощущения, возникают воспалительные процессы.

Движение осуществляется с помощью сустава, в котором соединяются две кости. Суставы — подвижные соединения, область соприкосновения костей в которых покрыта суставной сумкой из плотной соединительной ткани. Суставная жидкость уменьшает трение между поверхностями при движении, эту же функцию выполняет и гладкий хрящ, покрывающий суставные поверхности.

Сухожилия соединяют скелетные (произвольно сокращающиеся) мышцы с костями. Соединительная ткань сухожилий находится на обоих концах мышцы (в местах прикрепления).

Суставная капсула прочно соединяется со связками — плотными волокнистыми структурами, соединяющими две кости. Они помогают стабилизировать сустав и предотвращают неестественные движения, позволяя в то же время совершать движения в нормальных условиях.

Главная функция суставов — участвовать в осуществлении движений. Они выполняют роль демпферов, гасящих инерцию движения и позволяющих мгновенно останавливаться в процессе движения.

При систематических занятиях физическими упражнениями и спортом суставы развиваются и укрепляются, повышается эластичность связок и мышечных сухожилий, увеличивается гибкость. И, наоборот, при отсутствии движений разрыхляется суставной хрящ и изменяются суставные поверхности, сочленяющие кости, появляются болевые ощущения, возникают воспалительные процессы.

4.2.
Общее представление о мышечной системе человека и ее функциях

В теле человека насчитывается более 600 мышц. Мышцы составляют: у мужчин — 42% веса тела; у женщин — 35%; в пожилом возрасте — 30%; у спортсменов — 45—52%. Более 50% веса всех мышц располагается на нижних конечностях, 25—30% — на верхних конечностях; 20—25% — в области туловища и головы.

Соотношение числа медленных и быстрых двигательных единиц в одной и той же мышце генетически обусловлено и может весьма значительно различаться.

Мышечная система обеспечивает многообразные движения человека, вертикальное положение тела и различные позы в пространстве, фиксацию внутренних органов в определенном положении, дыхательные движения, усиление тока крови, лимфы и других жидкостей («мышечный насос»), теплорегуляцию и совместно с другими функциональными системами целый ряд других физиологических процессов.

Существует три вида мускулатуры:

Гладкие мышцы расположены в стенках кровеносных сосудов и некоторых внутренних органах. Они сужают или расширяют сосуды, продвигают пищу по желудочно-кишечному тракту, сокращают стенки мочевого пузыря. Их работа не зависит от воли человека.

Поперечно-полосатые мышцы — это все скелетные мышцы, которые обеспечивают многообразные движения тела. Их работа находится под волевым контролем.

Основным морфофункциональным элементом нервно-мышечного аппарата является двигательная единица (ДЕ), состоящая из мотонейрона с иннервируемыми им мышечными волокнами. Число мышечных волокон, входящих в одну ДЕ, различно в разных мышцах (к примеру, в глазных мышцах одна ДЕ содержит 13—20 мышечных волокон, а ДЕ внутренней головки икроножной мышцы — 1500—2500).

По морфологическим и функциональным особенностям ДЕ делятся на:

Скелетные мышцы человека состоят из ДЕ всех трех типов: одни — из преимущественно медленных, другие — из преимущественно быстрых, третьи содержат и те и другие виды ДЕ. Соотношение числа медленных и быстрых ДЕ в одной и той же мышце генетически обусловлено и может весьма значительно различаться. Так, например, в четырехглавой мышце бедра человека соотношение медленных волокон может варьировать от 40 до 98%.

Красные мышечные волокна имеют большой запас гликогена и липидов, обладают способностью к длительному напряжению и выполнению продолжительной динамической работы.

Белые мышечные волокна сокращаются быстрее красных волокон, но не способны к длительному напряжению.

Сердечная мышца состоит из поперечно-полосатых мышечных волокон. Они сокращаются быстро. Как и гладкие мышцы, сердечная мышца работает без участия воли человека.

Основа мышц — белки, составляющие 80—85% мышечной ткани. Главное свойство мышечной ткани — сократимость. Она обеспечивается благодаря мышечным белкам — актину и миозину.

Мышца имеет волокнистую структуру. Каждое волокно — это мышца в миниатюре. Совокупность этих волокон и образует мышцу в целом. Мышечное волокно в свою очередь состоит из миофибрилл.

Различают красные мышечные волокна и белые мышечные волокна. Они содержатся в мышцах в разных пропорциях.

Красные мышечные волокна имеют большой запас гликогена и липидов, обладают способностью к длительному напряжению и выполнению продолжительной динамической работы.

Белые мышечные волокна сокращаются быстрее красных волокон, но не способны к длительному напряжению.

К мышце подходят и от нее отходят (принцип рефлекторной дуги) многочисленные нервные волокна. Двигательные нервные волокна передают импульсы от головного и спинного мозга, приводящие мышцы в рабочее состояние; чувствительные волокна передают импульсы в обратном направлении, информируя центральную нервную систему о деятельности мышц.

Каждую мышцу пронизывает разветвленная сеть капилляров, по которым поступают необходимые для жизнедеятельности мышц вещества и выводятся продукты обмена.

4.2.1.
Скелетная мускулатура

Скелетные мышцы входят в структуру опорно-двигательного аппарата, крепятся к костям скелета и при сокращении приводят в движение отдельные звенья скелета.

Они участвуют в удержании положения тела и его частей в пространстве, обеспечивают движения при ходьбе, беге, жевании, глотании, дыхании и т.д., вырабатывая при этом тепло. Скелетные мышцы обладают способностью возбуждаться под влиянием нервных импульсов. Возбуждение проводится до сократительных структур (миофибрилл), которые, сокращаясь, выполняют двигательный акт — движение или напряжение.

У человека насчитывается около 600 мышц и большинство из них парные. В каждой мышце различают активную часть (тело мышцы) и пассивную (сухожилие).

Мышцы, действие которых направлено противоположно, называются антогонистами, однонаправленно — синергистами. Одни и те же мышцы в различных ситуациях могут выступать в том и другом качестве.

По функциональному назначению и направлению движений в суставах различают мышцы сгибатели и разгибатели, приводящие и отводящие, сфинктеры (сжимающие) и расширители.

4.2.2.
Краткий обзор скелетных мышц

Мышцы туловища включают мышцы грудной клетки, спины и живота. Мышцы грудной клетки участвуют в движениях верхних конечностей, а также обеспечивают дыхательные движения. Мышцы спины участвуют в поддержании вертикального положения тела, при сильном напряжении вызывают прогибание туловища назад. Брюшные мышцы поддерживают давление внутри брюшной полости, участвуют в некоторых движениях тела, в процессе дыхания.

Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. В качестве основного поставщика энергии выступает аденозинтрифосфорная кислота.

Мышцы головы и шеи — мимические, жевательные, приводящие в движение голову и шею.

Мышцы верхних конечностей обеспечивают движение плечевого пояса, плеча, предплечья и приводят в движение кисть и пальцы.

Мышцы нижних конечностей обеспечивают движения бедра, голени и стопы. Многие мышцы бедра, голени и стопы принимают участие в поддержании тела человека в вертикальном положении. Мышцы передней и задней половин тела представлены на рис. 4.1, 4.2.

4.2.3.
Общее представление о морфофизиологическом механизме и энергетике мышечного сокращения

Морфофизиологический механизм мышечного сокращения и следующего за ним обязательного расслабления (релаксации) достаточно сложен и связан с особенностями строения и наличием характерных (специализированных) свойств мышцы. Скелетная мышца состоит из пучков вытянутых в длину клеток — мышечных волокон, обладающих тремя свойствами: возбудимостью, проводимостью и сократимостью. Свойство физиологической сократимости, присущее только мышечной клетке, обеспечивается присутствием в ней саркоплазматического ретикулума, который представляет собой замкнутую биологическую систему внутриклеточных образований, напоминающих трубочки и цистерны, окружающих каждую миофибриллу.

Сокращение и напряжение мышцы осуществляется за счет энергии, освобождающейся при химических превращениях, которые происходят при поступлении в мышцу нервного импульса или нанесении на нее непосредственного раздражения. В качестве основного поставщика энергии выступает АТФ (аденозинтрифосфорная кислота).

АТФ в организме играет роль «универсальной валюты», идущей на оплату всех энергетических потребностей живых клеток. Так как запасы АТФ в мышцах невелики, чтобы поддерживать их деятельность, необходим непрерывный ресинтез АТФ. Его восполнение и образование энергии в принципе происходит двумя способами — в зависимости от того, присутствует при этом кислород или нет.

Реакции, совершающиеся в бескислородной среде получили название анаэробных. Освобождение энергии в этом случае происходит за счет мгновенного расщепления богатых энергией веществ на менее богатые. Последнее звено в этом расщеплении — когда гликоген превращается в молочную кислоту.

Гликоген — сложный вид сахара, родственный крахмалу. Сахар и другие виды углеводов, которые мы потребляем, накапливается в организме в виде гликогена. Следовательно, для простоты можно записать:

гликоген → молочная кислота + энергия

Этот механизм расщепления может давать большой эффект, и он может использоваться при кратковременной максимальной работе (спринтерский бег, бег вверх по лестнице), когда необходимо внезапно проявить силу, а кровоснабжение мышц при этом недостаточно. Недостаток же заключается в том, что в работающих мышцах накапливается молочная кислота и им становится трудно справляться с воздействием кислой среды. Молочная кислота для мышцы является веществом утомления, и поэтому мышца может работать только незначительное время.

Реакции, происходящие с участием кислорода, получили название аэробных. Образование энергии и восстановление запасов АТФ в этом случае происходит за счет окисления углеводов и жиров. При этом образуются углекислый газ и вода. Часть энергии расходуется на восстановление молочной кислоты в глюкозу и гликоген. При этом обеспечивается ресинтез АТФ:

углеводы + жиры → углекислый газ + вода + энергия

Аэробный ресинтез АТФ отличается высокой экономичностью, а также универсальностью в использовании субстратов: окисляются все органические вещества организма (аминокислоты, белки, углеводы, жирные кислоты и др.). Однако он требует потребления кислорода, доставка которого в мышечную ткань обеспечивается дыхательной и сердечно-сосудистой системами, что естественно связано с их напряжением. Кроме того, развертывание аэробного образования АТФ продолжительно по времени и невелико по мощности.

4.2.4.
Понятие о кислородном запросе и кислородном долге

Количество кислорода, необходимое для полного обеспечения выполняемой работы, называют кислородным запросом. Но органы кислородного снабжения «тяжелы на подъем», они не могут быстро удовлетворить кислородный запрос. Поэтому образуется кислородный долг.

Обычно в общем кислородном долге различают две фракции: алактатную и лактатную.

Первую связывают с ресинтезом АТФ и с восполнением израсходованных кислородных резервов организма. Эта часть кислородного долга оплачивается очень быстро (не более, чем за 1—1,5 мин).

Вторая фракция отражает окислительное устранение лактатов (молочной кислоты). Ликвидация лактатной фракции кислородного долга происходит более медленными темпами (от нескольких минут до 1,5 часа).

4.3.
Кровь как физиологическая система, жидкая ткань и орган

Кровь (в совокупности с лимфой и тканевой жидкостью представляет внутреннюю среду организма) — жидкая ткань, циркулирующая в кровеносной системе и обеспечивающая жизнедеятельность клеток и тканей организма в качестве органа и физиологической системы (видео 4.1).

За счет реализации транспортной функции обеспечивает постоянство основных физиологических и биохимических параметров, осуществляя гуморальную связь между функциональными системами и тканями организма.

Время кругооборота крови — это тот промежуток времени, за который кровь проходит через большой и малый круги кровообращения. В покое время полного кругооборота крови у человека составляет 20—23 с. При физических нагрузках различной мощности, объема и интенсивности оно может снижаться в 2—2,5 раза, достигая при интенсивных нагрузках 8—10 с.

Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организм. Эти условия обеспечиваются системами свертывания (гемокоагуляции) и антисвертывания (гемоантикоогуляции) крови.

Кровь состоит из плазмы (54—58%) и взвешенных в ней форменных элементов: эритроцитов, лейкоцитов, тромбоцитов (42—46%) и ряда других веществ. Образование форменных элементов крови называется гогмопоэзом и осуществляется в кроветворных органах: в костном мозге образуются эритроциты, тромбоциты, нейтрофилы, эозинофилы и базофилы; в селезенке и лимфатических узлах — лимфоциты; моноциты (самые крупные клетки белой крови, обладающие самой высокой фагоцитарной активностью по отношению к продуктам распада клеток и тканей, а также обезвреживающие токсины в очагах воспаления) — в костном мозге, селезенке и лимфатических узлах.

Эритроциты — красные кровяные клетки, заполнены особым белком гемоглобином, который способен образовывать соединения с кислородом и транспортировать его из легких к тканям, а из тканей переносить углекислый газ к легким, осуществляя таким образом дыхательную функцию.

В норме количество эритроцитов, содержащееся в одном кубическом мм крови, составляет у мужчин около 5 млн, а у женщин — около 4,5 млн.

При физических нагрузках выделяют три типа реакций красной крови.

  1. Повышение количества эритроцитов (миогенный эритроцитоз) до 5—6 млн в 1 мл крови и, как следствие, незначительное повышение гемоглобина. К исходному уровню эти показатели приходят спустя несколько часов.

  2. Существенно усиливается функция кроветворения, приводящая к увеличению в крови незрелых форм эритроцитов, снижению количества зрелых и концентрации гемоглобина. Восстановление исходного уровня в этом случае происходит в течение 2—3 суток.

  3. Имеет место при многодневной напряженной физической нагрузке и характеризуется угнетением кроветворной функции, при этом значительно снижается количество эритроцитов и гемоглобина в крови. В этой ситуации период восстановления картины красной крови может достигать 5—7 дней, что может сигнализировать о развитии хронического утомления и даже переутомления организма.

Жидкое состояние крови и замкнутость кровеносного русла являются необходимыми условиями жизнедеятельности организм. Эти условия обеспечиваются системами свертывания (гемокоагуляции) и антисвертывания (гемоантикоогуляции) крови.

Лейкоциты — белые кровяные тельца, выполняют защитную функцию, уничтожая инородные тела и болезнетворные микробы, непосредственно в пораженных местах.

Принимают активное участие в иммунологических реакциях и формировании иммунитета — способности организма защищаться от генетически чужеродных тел и веществ. Процентное соотношение различных форм лейкоцитов в крови называют лейкоцитарной формулой, которая в определенной степени может служить лакмусовой бумажкой при оценке функционального состояния человека. Общее количество лейкоцитов в крови и лейкоцитарная формула не является постоянными. Лейкоцитоз — это увеличение числа лейкоцитов в периферической крови, а лейкопения — его уменьшение. Продолжительность жизни лейкоцитов — 7—10 дней. Количество лейкоцитов в крови здорового человека варьирует и составляет в покое около 6—8 тыс. в одном кубическом мм крови.

Тромбоциты — маленькие кровяные пластинки, обладают активным метаболизмом, играют ведущую роль в сложном процессе свертывания крови (защитная функция). Количество тромбоцитов в кубическом мм крови составляет 200—300 тыс.

При физических нагрузках отмечается увеличение количества тромбоцитов (миогенный тромбоцитоз) в 1,5—2 раза. Наличие миогенного тромбоцитоза связано с укорочением периода свертываемости крови и, надо полагать, обусловлено рефлекторной защитной реакцией организма на возможные ситуации вынужденных травм и кровотечений.

Плазма крови, представляющая собою бесцветную жидкость, на 90—92% состоит из воды и на 8—10% из взвешенных твердых и растворенных веществ (глюкоза, белки, жиры, различные соли, гормоны, витамины, питательные и другие продукты обмена веществ). Физико-химические свойства плазмы определяются наличием в ней органических и минеральных веществ. В плазме крови находятся и антитела, создающие иммунитет организма к ядовитым веществам инфекционного или какого-либо иного происхождения, микроорганизмам и вирусам. Плазма крови принимает активное участие в транспортировке углекислого газа к легким.

Изменения, происходящие в системе крови при физических нагрузках различного объема и интенсивности, отражают общие физиологические закономерности функциональных реакций организма на конкретную нагрузку и направлены на поддержание, сохранение и восстановление относительного постоянства внутренней среды организма.

Важнейшим свойством плазмы является осмотическое давление, присущее растворам, отделенным друг от друга полупроницаемой мембраной, создается движением молекул растворителя (например, воды) через мембрану в сторону большей концентрации растворенного вещества. Основную роль в величине осмотического давления играют минеральные соли. Клетки крови имеют осмотическое давление, одинаковое с плазмой. Та часть осмотического давления, которая обусловлена белками плазмы крови, называется онкотическим, которое имеет важное значение для процессов фильтрации и распределения воды между кровью и тканями организма.

Для характеристики активной реакции крови (кислая она или щелочная) пользуются водородным показателем (рН), который является отрицательным десятичным логарифмом концентрации водородных ионов. При показателе рН, равном 7,0, реакция является нейтральной, кислая среда (ацидоз) имеет рН ниже 7,0, щелочная (алкалоз) — выше 7,0. В норме кровь имеет слабощелочную реакцию: рН артериальной крови равен 7,4, венозной — 7,35. От величины этой реакции зависят процессы окисления и восстановления в клетках, процессы расщепления и синтеза белков, гликолиза, окисления углеводов и жиров, способность гемоглобина отдавать тканям кислород. Постоянство рН крови поддерживается ее буферными системами (бикарбонатная, фосфатная, гемоглобиновая и белков плазмы) и активной деятельностью органов выделения. Все буферные системы создают в крови относительно постоянный щелочной резерв, который особенно препятствует сдвигу реакции крови в кислую сторону.

Общее количество крови составляет 7—8% массы тела человека. В покое 40—50% крови выключено из кровообращения и находится в «кровяных депо»: печени, селезенке, сосудах кожи, мышц, легких. В случае необходимости (например, при мышечной работе) запасной объем крови включается в кровообращение и рефлекторно направляется к работающему органу. Выход крови из «депо» и ее перераспределение по организму регулируется ЦНС.

Мышечная деятельность приводит к существенным изменениям в системе крови: накапливаются в результате повышенного образования недоокисленные продукты обмена веществ, вследствие развивающейся гипоксии происходит сдвиг кислотно-щелочного равновесия в сторону метаболического ацидоза. Буферные системы в этой ситуации оказываются неспособными нейтрализовать накопившиеся в крови продукты неполного окисления. Снижение щелочного резерва крови при значительной мышечной работе на 95% обусловлено повышением концентрации в первую очередь молочной кислоты и других кислых продуктов, и на 5% — увеличением содержания свободных жирных кислот в плазме крови. При длительной работе за счет увеличения относительного количества форменных элементов крови, связанного с выходом жидкости из сосудистого русла, вязкость крови может повыситься с 4—5 до 7—8 ед. Повышение вязкости крови, увеличивая периферическое сопротивление току крови, может существенно затруднять работу сердечно-сосудистой системы, если учесть, что при этом усиливается активность свертывающей и антисвертывающей систем крови.

Таким образом, изложенный далеко не в полной мере материал показывает, что изменения, происходящие в системе крови при физических нагрузках различного объема и интенсивности, отражают общие физиологические закономерности функциональных реакций организма на конкретную нагрузку и направлены на поддержание, сохранение и восстановление относительного постоянства внутренней среды организма.

Понятие о группах крови

Еще в самом начале прошлого века было сформулировано учение о группах крови и возможностях ее переливания, связанного с большой кровопотерей, от одного человека (донора) к другому (реципиенту). Было выделено четыре группы крови, встречающихся у людей. Эта классификация не утратила своего значения и в наши дни и основана на наличии антигенов, находящихся в эритроцитах (агглютиногенов А и В) и в плазме крови (агглютининов альфа и бэта). Агглютиноген А и агглютинин альфа, а также В и бэта называются одноименными. В крови не могут встречаться одноименные антигены — они вступают в реакцию агглютинации, которая приводит к склеиванию и разрушению (гемолизу) эритроцитов.

В эритроцитах I группы крови не содержится агглютиногенов вообще, а в плазме имеются только агглютинины альфа и бэта.

В эритроцитах II группы содержится агглютиноген А, а в плазме — агглютинин бэта.

В эритроцитах III группы содержится агглютиноген В, а в плазме — агглютинин альфа.

IV группа характеризуется содержанием агглютиногенов А и В и полным отсутствием агглютининов.

Логично, что людям с I группой можно переливать кровь только этой группы, а их кровь — представителям всех других групп. Поэтому доноров с I группой крови называют универсальными, а с IV группой — универсальными реципиентами. Кровь II и III групп можно переливать только людям с одноименной, а также с IV группой.

4.4.
Сердечно-сосудистая система

Система кровообращения — одна из важнейших физиологических — включает в себя сердце, выполняющее функцию насоса, и кровеносные сосуды (артерии, артериолы, капилляры, вены, венулы). Транспортная функция сердечно-сосудистой системы состоит в том, что сердце обеспечивает продвижение крови по замкнутой цепи эластичных кровеносных сосудов.

Основными физическими показателями гемодинамики (движения крови в системе) являются: давление крови в сосудах, создаваемое насосной функцией сердца; разница давлений между различными отделами сосудистой системы «вынуждает» кровь продвигается в сторону низкого давления.

Систолическое, или максимальное артериальное давление (АД) — это максимальный уровень давления, развивающийся во время систолы. У взрослых относительно здоровых людей в покое обычно составляет 110—125 мм рт. ст. С возрастом оно увеличивается и к 50—60 годам находится в пределах 130—150 мм рт. ст.

Диастолическое, или минимальное АД — это минимальный уровень давления крови при диастоле. У взрослых составляет обычно 60—80 мм рт. ст.

Пульсовое давление — это разница между систолическим и диастолическим АД (в норме у человека 30—35 мм рт. ст.). Наряду с другими показатель пульсового давления используется в определенных ситуациях специалистами клиники и спортивной медицины.

Изменения АД при различных видах мышечной деятельности безусловно имеют место. Повышение уровня систолического давления при сокращении скелетных мышц — одно из необходимых условий адаптивных (приспособительных) реакций системы кровообращения и организма в целом к выполнению мышечной работы. Увеличение АД обеспечивает адекватное кровоснабжение работающих мышц, повышая уровень их работоспособности. При этом изменения показателей АД обуславливаются характером выполняемой работы: динамическая она или циклическая, интенсивная или объемная, глобальная или локальная.

Сердце — полый четырехкамерный (два желудочка и два предсердия) мышечный орган весом от 220 до 350 г у мужчин и от 180 до 280 г у женщин, совершающий ритмические сокращения с последующим расслаблением, благодаря которым происходит кровообращение в организме (видео 4.2).

Сердце — автономное, автоматическое устройство. Сокращения сердца происходят вследствие периодически возникающих в самой сердечной мышце электрических импульсов. В отличие от скелетной мышцы, сердечная обладает рядом свойств, обеспечивающих ее непрерывную ритмическую активность: возбудимостью, автоматией, проводимостью, сократимостью и рефрактерностью (кратковременным снижением возбудимости). В каждом сокращении участвуют все мышечные волокна, а сила сокращения сердечной мышцы в отличие от скелетной не может изменяться путем вовлечения различного числа клеток сердечной мышцы (закон «все или ничего»). Работа сердца заключается в ритмичной смене сердечных циклов, состоящих из трех фаз: сокращения предсердий, сокращения желудочков и общего расслабления сердца. Однако в целом деятельность сердца корректируется многочисленными прямыми и обратными связями, поступающими от различных органов и систем организма. Функция сердца постоянно связана с центральной нервной системой, которая оказывает на его работу регулирующее воздействие.. Одним из важнейших показателей работы сердца является минутный объем кровообращения (МОК) или по-иному «сердечный выброс» (СВ) — количество крови, выбрасываемое желудочком сердца в течение минуты. МОК — это интегративный показатель работы сердца, зависящий от ЧСС и величины систолического объема (СО) — количества крови, выбрасываемого сердцем в сосудистое русло при одном сокращении. Естественно, что эти показатели имеют одно значение в условиях относительного покоя и существенно меняются в зависимости от функционального состояния сердца, объема, интенсивности и вида мышечной деятельности, уровня тренированности и т.д.

Сердечно-сосудистая система состоит из большого и малого кругов кровообращения. Левая половина сердца обслуживает большой круг кровообращения, правая — малый.

Основными физическими показателями гемодинамики (движения крови в системе) являются: давление крови в сосудах, создаваемое насосной функцией сердца; разница давлений между различными отделами сосудистой системы «вынуждает» кровь продвигается в сторону низкого давления.

Повышение уровня систолического давления при сокращении скелетных мышц — одно из необходимых условий адаптивных (приспособительных) реакций системы кровообращения и организма в целом к выполнению мышечной работы.

Частота сердечных сокращений (ЧСС) — один из самых информативных и интегративных показателей функционального состояния не только сердечно-сосудистой системы, но и всего организма в целом. Зачастую понятие ЧСС не совсем правомерно отождествляют с понятием пульс. Пульс — это результат непосредственных ритмических сокращений сердца, представляющий собой регистрируемую каким-либо способом (например, пальпаторно) волну колебаний, распространяемую по эластичным стенкам артерий в результате гидродинамического удара порции крови, выбрасываемой в аорту под большим давлением при очередном сокращении левого желудочка. Однако частота пульса соответствует ЧСС.

ЧСС (или пульс) существенно разнятся в зависимости от того, когда и при каких условиях этот показатель регистрируется: в условиях относительного покоя (утром, натощак, лежа или сидя, в комфортной обстановке); при выполнении какой-либо физической нагрузки, непосредственно после нее или на различных этапах периода восстановления. В покое пульс практически здорового, не адаптированного к систематическим физическим нагрузкам (нетренированного) молодого мужчины в возрасте 20—30 лет колеблется в диапазоне 60—70 ударов в минуту (уд/мин) и 70—75 — у женщин. С возрастом ЧСС в покое несколько возрастает (у 60—75-летних на 5—8 уд/мин). Чтобы удовлетворить повышение доставки кислорода к мышцам в процессе выполнения работы, должен увеличиться объем поступающей к ним в единицу времени крови. Увеличение показателя ЧСС непосредственно связано с увеличением МОК. Если, например, мощность работы циклического характера выразить через величину потребляемого кислорода (в процентах от величины максимального потребления — МПК), то ЧСС возрастает в линейной зависимости от мощности работы и потребления кислорода.

У «особей» женского пола ЧСС в подобных случаях обычно на 10—12 уд/мин выше.

4.5.
Дыхательная система

Дыхательная система включает в себя носоглотку, гортань, трахею, бронхи и легкие. Она стоит на пути вдыхаемого воздуха и за счет дыхательных движений грудной клетки осуществляет вентиляцию важнейшего органа дыхательной системы человека — легких (видео 4.3, 4.4).

Систематические занятия физическими упражнениями, особенно циклического характера, укрепляют и развивают дыхательную мускулатуру, что способствует увеличению объема и подвижности (экскурсии) грудной клетки с одной стороны и расширению функциональных возможностей организма с другой.

В процессе дыхания из атмосферного воздуха, в составе которого содержится около 21% кислорода, этот кислород поглощается и через специальные образования легких — альвеолы — поступает в кровь организма, а из организма обратным путем выделяется углекислый газ. Таким образом, дыхание — это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение избытка углекислого газа, направленных на поддержание газового гомеостаза организма в целом, параметрами которого являются такие показатели, как парциальное напряжение кислорода, углекислого газа и рН артериальной крови. Газообмен между клетками организма и окружающей средой в итоге и служит конечной целью функции дыхательной системы.

Механизм дыхания имеет рефлекторный (автоматический) характер. Изменение объема полости грудной клетки осуществляется в результате деятельности дыхательной мускулатуры (в покое — это диафрагма и наружные межреберные мышцы, при интенсивной мышечной работе в процесс дыхания вовлекаются дополнительно мышцы брюшного пресса, внутренние межреберные и другие скелетные мышцы). Ритмические дыхательные движения осуществляются путем смены вдоха (инспирация) и выдоха (экспирация). При вдохе объем грудной клетки увеличивается (увлекая за собой легкие) за счет поднятия ребер и уплощения диафрагмы, при необходимости увеличения глубины вдоха и выдоха, например, во время выполнения физических нагрузок, «на помощь» приходят скелетные мышцы. Вдох — всегда активный двигательный акт, при осуществлении которого совершается работа, а выдох может осуществляться и пассивно (например, в условиях покоя).

Легкие (левое и правое) располагаются в герметически закрытой полости грудной клетки. Они покрыты тонкой гладкой оболочкой — плеврой, такая же оболочка выстилает изнутри полость грудной клетки, образуя плевральную щель, или полость, заполненную некоторым количеством плевральной жидкости и воздуха, где давление при обычных условиях всегда ниже атмосферного. В условиях относительного покоя человек дышит таким образом, что задействованной оказывается только часть легких. Поэтому всегда остается резерв для вдоха и выдоха.

Выделяют четыре первичных легочных объема воздуха: дыхательный, поступающий в легкие при каждом вдохе; резервный воздух вдоха, дополнительно вдыхаемый после нормального вдоха; резервный выдоха, дополнительно выдыхаемый после нормального выдоха; остаточный, остающийся после глубокого выдоха.

Кроме них существуют понятия о легочных емкостях, которых тоже четыре. Одна из них — жизненная емкость легких (ЖЕЛ). ЖЕЛ — количество воздуха, которое может быть выдохнуто из легких после максимального вдоха. Этот показатель широко используется при оценке уровня физического развития и физической подготовленности. С возрастом абсолютные величины дыхательных объемов и емкостей вначале (от 10 до 20 лет) увеличиваются, а относительные сохраняются и стабилизируются до 35—40 лет.

Величина ЖЕЛ, у практически здоровых людей, не тренирующихся специально, составляет у женщин — 2,5—3,0 л, а у мужчин — 3,0—4,0 л. У спортсменов одинакового возраста и роста этот показатель зависит от специализации (например, у представителей циклических видов спорта, таких как легкая атлетика, плавание, академическая гребля, лыжные гонки и некоторые другие, ЖЕЛ может достигать 7,0—8,0 и даже 9,0 л).

В процессе текущих учебно-тренировочных занятий после выполнения больших физических нагрузок ЖЕЛ может незначительно уменьшаться (на 100—200 мл), восстанавливаясь в дни отдыха.

Этап дыхания, при котором кислород из атмосферного воздуха переходит в кровь, а углекислый газ из крови — в атмосферный воздух, называют внешним дыханием. Перенос газов кровью — следующий этап. И, наконец, тканевое (или внутреннее) дыхание — потребление клетками кислорода и выделение ими углекислоты как результат биохимических реакций, связанных с образованием энергии, которая должна обеспечить многообразные процессы жизнедеятельности организма. Таким образом, процесс дыхания — это целый комплекс физиологических и биохимических процессов, в реализации которых участвует не только дыхательная система, но и целый ряд других, в частности, система крови и кровообращения.

Систематические занятия физическими упражнениями, особенно циклического характера, укрепляют и развивают дыхательную мускулатуру, что способствует увеличению объема и подвижности (экскурсии) грудной клетки с одной стороны и расширению функциональных возможностей организма с другой.

4.6.
Система пищеварения и выделения

Пищеварительная система состоит из ротовой полости, слюнных желез, глотки, пищевода, желудка, тонкого и толстого кишечника, печени и поджелудочной железы. В этих отделах пищеварительной системы пища в виде пищевых продуктов, в состав которых должны входить белки, жиры, углеводы, минеральные соли, витамины и вода, механически и химически перерабатывается, перемещается, переваривается и усваивается (всасывается). Процессы пищеварения в разных отделах желудочно-кишечного тракта имеют свои особенности моторной, секреторной, всасывающей и выделительной функций переработки пищи.

Регулярные занятия физическими упражнениями и мышечная работа относительно умеренной интенсивности, повышая обмен веществ и энергии, увеличивает потребность организма в питательных веществах и тем самым стимулирует функции системы пищеварения. Однако выполнение физических нагрузок целесообразно не ранее, чем через 1,5—2 ч. после приема пищи.

Первый пищеварительный сок (слюна) встречается на пути пищи в ротовой полости. Он содержит ферменты, расщепляющие углеводы. Общее количество слюны, выделяемое за сутки, составляет 1—1,5 л. Через 15—20 с пребывания во рту пищевой комок, измельченный и смоченный слюной, через пищевод попадает в желудок. Находясь в ротовой полости, пища раздражает вкусовые, тактильные и температурные рецепторы, как пусковой механизм вызывает рефлекторные акты секреции слюнных, желудочных и поджелудочной железы, активизирует выход желчи в двенадцатиперстную кишку и изменят моторную функцию желудка (видео 4.5).

Пищеварительные функции желудка состоят в депонировании пищи, дальнейшей ее механической (периодические сокращения мышц желудка), химической обработке желудочным соком и постепенной эвакуации в двенадцатиперстную кишку (видео 4.6).

За сутки у человека выделяется 2—2,5 л желудочного сока. Переваривание пищи в желудке обычно происходит в течение 6—8 часов и зависит от ее состава, объема и количества выделившегося желудочного сока. В двенадцатиперстной кишке пищевая масса подвергается воздействию кишечного сока, желчи печени и сока поджелудочной железы. Здесь пища долго не задерживается, и основные процессы пищеварения происходят в нижележащих отделах кишечника (видео 4.7, 4.8).

Регулярные занятия физическими упражнениями и мышечная работа относительно умеренной интенсивности, повышая обмен веществ и энергии, увеличивает потребность организма в питательных веществах и тем самым стимулирует функции системы пищеварения. Однако выполнение физических нагрузок целесообразно не ранее, чем через 1,5—2 ч. после приема пищи.

Выделительную систему образуют почки (видео 4.9), мочеточники и мочевой пузырь, которые обеспечивают выделение из организма с мочой вредных продуктов обмена веществ (до 75%) (видео 4.10). Кроме того, некоторые продукты обмена выделяются через кожу (с секретом потовых и сальных желез), легкие (с выдыхаемым воздухом) и через желудочно-кишечный тракт.

За счет выделительной системы в организме обеспечиваются мочеобразовательный и гомеостатический процессы: поддерживается кислотно-щелочное равновесие (рН), необходимый объем воды и солей, стабильное осмотическое давление, ионный состав, выводятся продукты белкового обмена, регулируется кровяное давление, эритропоэз и свертывание крови, а также секреция ферментов и биологически активных веществ, участвующих в регуляции и поддержании постоянства внутренней среды организма.

Несколько слов о потоотделении, которое выполняет ряд важнейших функций: освобождает организм от конечных продуктов обмена веществ; путем выведения воды и солей поддерживает постоянство осмотического давления; нормализует температуру тела вследствие теплоотдачи при испарении пота с поверхности кожи. Пот содержит 98—99% воды, минеральных солей и органических веществ. За сутки в условиях относительного покоя при комфортной температуре окружающей среды выделяется около 500—600 мл пота. Различают термическое (находится в прямой зависимости от повышения температуры окружающей среды) и эмоциональное (возникает при различных психических реакциях и умственном перенапряжении) потоотделение. Потоотделение при физических нагрузках представляет сочетание обоих видов. При этом происходит значительное перераспределение крови. Усиленный ее приток к работающим мышцам приводит к снижению почечного кровотока (примерно в 4 раза), к уменьшению мочеобразования. В такой ситуации основную выделительную функцию берут на себя потовые железы.

4.7.
Нервная система

Нервная система состоит из центрального (головной и спинной мозг) и периферического отделов (неровные образования спинного мозга и расположенные на периферии нервные узлы). Основными структурными элементами нервной системы являются нервные клетки, или нейроны, основными функциями которых являются: восприятие раздражений от рецепторов, их переработка и передача нервных влияний на другие нейроны или рабочие органы.

Центральная нервная система (ЦНС) координирует деятельность различных органов и систем организма и регулирует ее в условиях изменяющейся внешней среды по механизму рефлекса (видео 4.11). Рефлекс — это ответная реакция организма на действие раздражителей, осуществляемая с участием ЦНС. Нервный путь рефлекса называется рефлекторной дугой (видео 4.12). У человека ведущим отделом ЦНС является кора больших полушарий. Процессы, протекающие в центральной нервной системе, лежат в основе всей психической деятельности человека.

Головной мозг представляет скопление огромного количества нервных клеток. Он состоит из переднего, промежуточного, среднего и заднего отделов. Строение головного мозга несравнимо сложнее строения любого органа человеческого тела. Мозг активен не только во время бодрствования, но и во время сна.

Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18—25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60—70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы.

Ухудшение кровоснабжения головного мозга может быть связано с гиподинамией. В этом случае возникает головная боль различной локализации, интенсивности и продолжительности, головокружение, слабость, понижается умственная работоспособность, ухудшается память, появляется раздражительность. Чтобы охарактеризовать изменения умственной работоспособности, используется комплекс методик, оценивающих различные ее компоненты (внимание, объем памяти и восприятия, логическое мышление).

Спинной мозг является низшим и наиболее древним отделом ЦНС, лежит в спинномозговом канале, образованном дужками позвонков. Первый шейный позвонок — граница спинного мозга сверху, а граница внизу — второй поясничный позвонок (видео 4.13).

Спинной мозг выполняет рефлекторную и проводниковую для нервных импульсов функции. Рефлексы спинного мозга подразделяются на двигательные и вегетативные, обеспечивающие элементарные двигательные акты: сгибательные, разгибательные, ритмические (например, шагательные, беговые, плавательные и др., связанные с чередующимися рефлекторными изменениями тонуса скелетных мышц). В структуре спинного мозга находятся нервы, иннервирующие кожу, слизистые оболочки, мускулатуру головы и ряд внутренних органов, функции пищеварительных процессов, жизненно важных центров (например, дыхательного), анализаторов и т.д. Всевозможные травмы и заболевания спинного мозга могут приводить к расстройству болевой, температурной чувствительности, нарушению структуры сложных произвольных движений, мышечного тонуса.

Вегетативная нервная система (ее еще называют автономной) — специализированный отдел нервной системы, регулируемый как произвольно (в содружестве с соматическим отделом нервной системы), так и непроизвольно (через кору больших полушарий).

Вегетативная нервная система регулирует деятельность внутренних органов — дыхания, кровообращения, выделения, размножения, желез внутренней секреции (видео 4.14). Она в свою очередь подразделяется на симпатический и парасимпатический отделы этой нервной структуры.

Мозговая ткань потребляет в 5 раз больше кислорода, чем сердце, и в 20 раз больше, чем мышцы. Составляя всего около 2% массы тела человека, мозг поглощает 18—25% потребляемого всем организмом кислорода. Мозг значительно превосходит другие органы и по потреблению глюкозы. Он использует 60—70% глюкозы, образуемой печенью, и это несмотря на то, что мозг содержит меньше крови, чем другие органы.

Возбуждение симпатического отдела приводит к повышению кровяного давления, выходу крови из депо, поступлению в кровь глюкозы, ферментов, повышению метаболизма тканей, что связано с расходом энергии (эрготрофная функция).

При возбуждении парасимпатических нервов тормозится работа сердца, повышается тонус гладкой мускулатуры бронхов, сужается зрачок, стимулируются процессы пищеварения, происходит опорожнение желчного и мочевого пузыря, прямой кишки.

Действие парасимпатической нервной системы направлено на восстановление и поддержание постоянства состава внутренней среды организма, нарушенного в результате деятельности симпатической нервной системы (трофотропная функция) (видео 4.15).

4.8.
Рецепторы и анализаторы

Способность организма быстро приспосабливаться к изменениям окружающей среды реализуется благодаря специальным образованиям — рецепторам, которые, обладая строгой специфичностью, трансформируют внешние раздражители (звук, температуру, свет, давление) в нервные импульсы, поступающие по нервным волокнам в центральную нервную систему.

Рецепторы человека делятся на две основные группы: экстеро- (внешние) и интеро- (внутренние) рецепторы. Каждый такой рецептор является составной частью анализирующей системы, которая называется анализатором.

Анализатор состоит из трех отделов — рецептора, проводниковой части и центрального образования в головном мозге (видео 4.16).

Высшим отделом анализатора является корковый отдел.

Перечислим названия анализаторов, о роли которых в жизнедеятельности человека известно многим. Это:

Значение сенсорных систем в жизнедеятельности организма трудно переоценить. Велико оно и при мышечной деятельности в процессе организации физкультурно-оздоровительной и спортивно-массовой работы. Формирование двигательных умений и навыков происходит в результате аналитико-синтетической деятельности коры больших полушарий на основе сложного взаимодействия информации, поступающей со стороны зрительной, слуховой, вестибулярной, проприоцептивной и других сенсорных систем. Одновременно при этом сенсорные системы участвуют и в регуляции функционального состояния организма в процессе, во время и после выполнения физической нагрузки.

4.9.
Эндокринная система

Железы внутренней секреции, или эндокринные железы, вырабатывают особые биологические вещества — гормоны. Гормоны обеспечивают гуморальную (через кровь, лимфу, межтканевую жидкость) регуляцию физиологических процессов в организме, попадая во все органы и ткани. Часть продуцируется только в определенные периоды, большинство же — на протяжении всей жизни человека. Они могут тормозить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, деятельность внутренних органов. К железам внутренней секреции относят: щитовидную, околощитовидные, зобную, надпочечники, поджелудочную, гипофиз, половые железы и ряд других (видео 4.17).

Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значительные изменения в состоянии организма, в частности в осуществлении обмена веществ и энергии. Гормоны сравнительно быстро разрушаются, и для поддержания их определенного количества в крови необходимо, чтобы они неустанно выделялись соответствующей железой.

Практически все расстройства деятельности желез внутренней секреции вызывают понижение общей работоспособности человека.

4.9.1.
Общая характеристика эндокринных функций

Гормоны обладают дистанционным действием, характеризуются специфичностью, которая выражается в двух формах: одни гормоны (например, половые) влияют только на функцию некоторых органов и тканей, другие управляют лишь определенными изменениями в цепи обменных процессов и в активности регулирующих эти процессы ферментов. Гормоны классифицируются по ряду основных признаков.

Во-первых, по химической природе, во-вторых, по знаку процесса воздействия (возбуждение или торможение), в-третьих, по локализации, месту воздействия и по другим специфическим функциональным особенностям. Они синтезируются и выделяются во внутреннюю среду организма эндокринными железами, или железами внутренней секреции.

Эндокринная железа — это анатомическое образование, лишенное выводных протоков, единственной или основной функцией которого является внутренняя секреция гормонов. Существуют и экзокринные железы, внешняя секреция которых осуществляется через выводные протоки во внешнюю среду. В некоторых органах могут присутствовать одновременно оба типа секреции (поджелудочная и половые железы). Одна и та же железа внутренней секреции может продуцировать неодинаковые по своему действию гормоны и осуществляться разными эндокринными железами (например, половые гормоны продуцируются и половыми железами, и надпочечниками).

Продукция биологически активных гормоноподобных веществ может производиться и другими органами (почки, желудочно-кишечный тракт, сердце). Известно, что регуляторные гипоталамические гормоны могут выполнять и медиаторную функцию (медиаторы — химические вещества, образующиеся в нервной ткани, посредством которых осуществляется перенос возбуждения в синапсах как периферической, так и центральной нервной системе). Поэтому, говоря о гормонах, следует иметь в виду эндокринную систему в целом, объединяющую все железы, ткани и клетки организма, выделяющие во внутреннюю среду специфические регуляторные вещества.

Часть гормонов продуцируется только в определенный период, большинство же — на протяжении всей жизни человека. Они могут тормозить или ускорять рост организма, половое созревание, физическое и психическое развитие, регулировать обмен веществ и энергии, деятельность внутренних органов и т.д.

Выше уже упоминалось, что к железам внутренней секреции относят:

Гормоны, как вещества высокой биологической активности, несмотря на чрезвычайно малые концентрации в крови способны вызывать значительные изменения в состоянии организма, в частности в осуществлении обмена веществ и энергии.

Некоторые из перечисленных желез вырабатывают кроме гормонов еще секреторные вещества (например, поджелудочная железа участвует в процессе пищеварения, выделяя секреты в двенадцатиперстную кишку; продуктом внешней секреции мужских половых желез являются сперматозоиды, а женских — яйцеклетка).

Нервное и гуморальное (через кровь и другие жидкие среды) воздействие на различные органы, ткани и их функции представляет собой проявление единой системы нейрогуморальной регуляции функций организма. Функции эндокринных желез регулируются центральной нервной системой через гипоталамус.

Роль гормонов в осуществлении мышечной активности чрезвычайно велика. Вот несколько подтверждающих примеров. При мышечной деятельности активизируется деятельность щитовидной железы и усиливается тканевое расщепление ее гормонов — тироксина, трийодтиронина и тирокальциотонина. Гормон эпифиза мелатонин под влиянием света в дневное время продуцируется в меньшем количестве, что обусловливает цикличность активности эпифиза, соответствующую периодам дня и ночи, являясь своего рода биологическими часами организма, обеспечивающими естественный уровень работоспособности. Под влиянием адреналина, гормона мозгового слоя надпочечников, ускоряется и усиливается деятельность сердца, повышается его возбудимость и увеличивается скорость проведения импульсов по сердечной мышце; важное значение при мышечных нагрузках имеет сокращение мышц стенок кровеносных сосудов в органах, которые являются кровяными депо, а также расслабление гладких мышц бронхов, что способствует уменьшению сопротивления движению воздуха при форсированном дыхании и, естественно, увеличивает транспорт кислорода к активно работающим тканям, органам и системам. С действием адреналина на обмен веществ связан известный факт восстановления работоспособности утомленных мышц при его введении. Во время выполнения физических нагрузок, сопровождающихся усиленным потоотделением, продукция гормона коркового слоя надпочечников — альдостерона — усиливается, в результате чего замедляется выделение с мочой натрия и калия, компенсируя этот процесс через механизм потоотделения. Усиленное выделение альдостерона предохраняет организм от существенных изменений содержания натрия и калия в плазме крови, что имеет важное значение при длительных нагрузках на выносливость (например, при длительном беге).

4.9.2.
Общая характеристика репродуктивной системы человека

Репродуктивная система — одна из сложных биологических образований в организме, важнейшая функция, которая связана с воспроизводством себе подобных. Под репродуктивными функциями этой системы подразумевается комплекс процессов, который связан с дифференцировкой и созреванием половых клеток, формированием половых мотиваций и поведения, половым актом и процессом оплодотворения, беременностью и родами, вскармливанием, последующим выращиванием и воспитанием потомства. Протекание, взаимодействие и регуляция этих процессов обеспечивается особой морфофункциональной системой, центром которой является так называемый нейроэндокринный (нервно-гормональный) комплекс «половые железы — гипоталамус — гипофиз».

Половые железы в процессе формирования и развития организма несут двоякую функцию:

Уровнем содержания половых гормонов в крови и их утилизацией в тканях определяется также и функциональная активность гипоталамических центров по принципу обратных связей.

Гипоталамус

Гипоталамус — вентральная часть промежуточного мозга, многофункциональная система, обладающая важными регулирующими и интегрирующими воздействиями на вегетативные функции, регуляцию деятельности эндокринной системы, теплового баланса, пищевых и половых инстинктов, биологических ритмов, поведенческих реакций, мотиваций и эмоций.

Гипоталамус целенаправленно регулирует секрецию тропных гормонов гипофиза и через нее — секрецию эндокринных желез. Подобное взаимодействие обеспечивает оптимальный для возрастного периода уровень гормонов. При этом гипоталамические центры являются не только главным звеном системы регуляции выработки гормонов, но и играют ведущую роль в формировании полового поведения. Таким образом, становится очевидным, что репродуктивная функция обеспечивается не только, хотя и в первую очередь, мужской и женской половыми системами, а связана с целым комплексом функционально взаимодействующих биологических систем и процессов.

Гипофиз

Гипофиз играет особую роль в системе желез внутренней секреции (видео 4.18). С помощью своих гормонов он регулирует деятельность других эндокринных желез. Состоит из передней, промежуточной и задней долей. В гипофизе человека промежуточная доля практически отсутствует. Гормоны задней доли гипофиза образуются в гипоталамусе и транспортируются в гипофиз, где депонируются и в дальнейшем поступают в кровь. Антидиуретический гормон, или вазопрессин, связан с функционированием почек и способствует выделению излишков воды. Окситокцин действует на мышечный слой матки и миоэпителиальное образование молочной железы. Передняя доля гипофиза выделяет шесть гормонов. Четыре из них стимулируют активность других желез (щитовидную, кору надпочечников), два остальных — гонадотропные, стимулируют созревание фолликулов в яичниках и сопровождают овуляцию и образование желтого тела.

Помимо этого, передняя доля гипофиза вырабатывает еще два гормона — гормон роста соматотропин и гормон пролактин, участвующий в формировании функции лактации. К факторам, повышающим секрецию гормонов гипофиза, относятся определенные виды стресса и особенно интенсивная мышечная деятельность.

Репродуктивные органы

Репродуктивные органы представляют собой различные морфофункциональные структуры (половые органы), обеспечивающие половой способ размножения, связанный со сменой поколений человеческих популяций. Слияние сперматозоида с яйцеклеткой называют процессом оплодотворения, что приводит к образованию зиготы, способной расти, развиваться и давать начало новому организму, объединяющему отцовские и материнские гены и наследующему их признаки (видео 4.19).

Мужская половая система образована семенниками (яичками), семявыносящими протоками, придаточными половыми железами, предстательной железой, семенными пузырьками, половым членом.

Женская — представлена яичниками, маточными трубами, маткой, влагалищем, большими и малыми половыми губами, клитором.

Действие половых гормонов проявляется на самых ранних стадиях эмбрионального развития, определяя половую дифференцировку растущего организма, формирование полового аппарата и строение ряда систем. Особенно резко влияние гормонов сказывается во время полового созревания, в процессе которого степень полового диморфизма все возрастает. В половом созревании принято различать три фазы — препубертатную, пубертатную и постпубертатную. Первая имеет место за два-три года до появления признаков полового созревания, вторая — от появления вторичных половых признаков до первых поллюций у мальчиков и первой менструации у девочек. Заключительным этапом полового созревания является половая зрелость, характеризующаяся общим физическим развитием и морфофункциональным состоянием половых органов в такой степени, что может позволять без ущерба для здоровья осуществлять половые функции. У лиц женского пола это возраст 16—18 лет, а у лиц мужского пола — 18—20 лет.

Однако надо всегда иметь в виду, что материнство и отцовство — очень ответственные не только биологические, но и социальные функции перед потомством в человеческом обществе. Понятие «половая жизнь» объединяет целую гамму соматических висцеральных, психических, социальных процессов и отношений, в основе которых заложено и посредством которых удовлетворяется половое влечение, должно предусматривать личностное объединение между мужчиной и женщиной, духовное общение между ними. В человеческом обществе взаимоотношение полов регулируется нормами морали, при этом особое значение имеют брачные отношения.

С наступлением половой зрелости в половых органах женского организма возникают периодические изменения, называемые циклами. Как уже говорилось, их регуляция осуществляется эндокринной системой. Во время очередного цикла происходит созревание фолликулов и овуляция — выход зрелых, способных к оплодотворению яйцеклеток. Если оплодотворения не происходит, наступает период, когда на месте лопнувшего фолликула вслед за овуляцией образуется желтое тело — временная железа, продуцирующая гормон прогестерон, главная функция которого в этой ситуации — подготовка к обеспечению беременности. У небеременных женщин этот гормон участвует в регуляции менструального цикла. Затем желтое тело начинает рассасываться и тормозится выработка прогестерона, начинают развиваться новые фолликулы, и снова усиливается секреция эстрогенных гормонов. Менструальный цикл (в среднем его продолжительность составляет 28 дней с возможными колебаниями от 21 до 32 дней) обеспечивает интеграцию процессов, необходимых для репродуктивной функции. Различают яичниковый (3 фазы) и маточный (4 фазы) циклы. При изменении функционального состояния центральной нервной системы под влиянием различных факторов внутренней и внешней среды менструальный цикл может нарушаться. Первая менструация — наиболее достоверный признак полового созревания женского организма. Средний возраст появления первого маточного кровотечения в нашей географической зоне — 12—13 лет. Однако следует знать, что первые признаки полового созревания у девочек могут иметь место между 8—12 годами.

За последние 100 лет произошло ускорение полового созревания в связи с акселерацией, выражающейся в увеличении размеров тела и более ранними сроками формирования многих функций, в том числе и половых. Считается, что акселерация является частью общей тенденции к некоторому изменению в биологических особенностях современного человека. Эта тенденция имеет место и в наши дни, так как предполагается, что в XXI в. молодежь будет в среднем на 10 см выше, чем их сверстники 60-х гг. XX в. К признакам, определяющим половую принадлежность, следует отнести: размеры тела, различие в строении и взаимодействии отдельных систем и органов, которые устанавливаются на субклеточном, клеточном, органном, системном и организменном уровнях.

Процессы половой дифференцировки происходят в ходе онтогенеза (индивидуальное развитие), которое охватывает эмбриональный и постэмбриональный периоды. Эмбриональный период определяет будущую генетическую программу организма и, в частности, дифференцировку половых желез. За время эмбрионального развития и внутриутробной жизни организма происходит не только развитие половых органов, но и формирование гормональной системы, о роли которой в двигательной деятельности говорилось выше.

В зависимости от периода после рождения (новорожденность, раннее детство, подростковый, юношеский возраст) формируются морфофизиологические взаимоотношения в организме, которые обеспечивают развитие и полное формирование репродуктивной системы. Например, юношеский возраст у девушек — 16—20 лет, а у юношей — 17—21.

Состояние беременности

Состояние организма матери при беременности связано с механизмом развития беременности и плода. До 9-й недели внутриутробного развития формирующийся организм носит название зародыша или эмбриона, а уж затем до рождения называется плодом. С перестройкой функций эндокринной и нервной системы при беременности значительным изменениям подвергается обмен веществ и потребление кислорода, заметно изменяется белковый, углеводный, жировой, водный и минеральный обмен, повышается значимость витаминов. У плода процессы ассимиляции преобладают над процессами диссимиляции, что обеспечивает его быстрый рост, а материнский организм обеспечивает оптимальные условия для развития плода.

Результатом законченного эмбрионального развития являются роды. Они осуществляются благодаря сокращениям мускулатуры матки и брюшного пресса, который должен готовиться к родовой функции с помощью физических упражнений задолго и специально. Необходимо знать, что важнейшим анатомическим признаком человека являются молочные железы, которые относятся к органам размножения. Лактация — вскармливание новорожденных молоком из молочных желез матери — одно из важнейших биологических приспособлений. Грудное молоко имеет сложный химический состав и по биологической ценности превосходит все другие продукты питания. В нем содержится огромное количество различных веществ, в том числе более 30 жирных кислот, 20 аминокислот, 17 витаминов, около 40 минеральных веществ, много ферментов и т.д. Ряд соединений (казеин, лактоза) ни в каких других продуктах питания не встречаются.

Нервные и физические перегрузки, так же как и недогрузки, загрязненный воздух городов, алкоголь, курение и другие вредные факторы окружающей среды и вредные привычки взрослых очень негативно сказываются на морфофункциональном и психическом состоянии неокрепшего организма ребенка. И чем он раньше сталкивается с так называемыми издержками цивилизации, тем существеннее и пагубнее последствия этих влияний. Особенно подвержены факторам риска при этом еще не родившиеся и грудные дети. Родители и особенно мать должны знать и помнить, что отведенные природой девять месяцев на внутриутробное развитие плода во многом определяют биологическую и социальную судьбу ребенка в предстоящей жизни.

Если родители хотят, чтобы их ребенок был благополучным и полноценным человеком в обществе, они должны еще до его зачатия, а тем более в период беременности матери и надолго после рождения, призвать в союзники своей семьи здоровый образ жизни.

На здоровье, физическое развитие и диапазон функциональных возможностей будущего ребенка существенно влияет активный двигательный режим матери, который способствует увеличению притока артериальной крови к работающим мышцам и соответственно оттока крови от матки. Эта ситуация приводит к дефициту кислорода и питательных веществ для плода, который вынужден проявлять собственную активность в борьбе за свое существование, совершая толчки, мощные разгибательные движения, упражняя тем самым собственный двигательный аппарат. Поэтому будущей матери необходимо систематически выполнять доступный комплекс физических упражнений, зарядку и прогулки на свежем воздухе, чередовать их с легкой домашней работой, доставляющей удовольствие, и создавать положительный эмоциональный настрой.