Тождественные преобразования тригонометрических выражений

Комментарий. Цель данного раздела — проработать выполнение заданий на тождественные преобразования тригонометрических выражений, поскольку они встречаются в ЕГЭ как в качестве отдельных заданий, так и используются для решения тригонометрический уравнений и неравенств, а так же комбинированных заданий. Для решения задач на упрощение тригонометрических выражений требуется достаточно хорошо знать правила преобразования алгебраических выражений и тригонометрические формулы (уметь применять их как по одной, так и в комплексе).

Основные формулы тригонометрии

Перевод градусной меры угла в радианную и обратно.

Пусть α — градусная мера угла, β — радианная, тогда справедливы формулы:

Формулы зависимости между функциями одного и того же аргумента:

1.

4.

2.

5.

3.

6.

Формулы сложения.

Формулы двойных и половинных углов.

1.

5.

2.

6.

3.

7.

4.

8.

Формулы преобразования суммы в произведение:

Формулы преобразования произведения в сумму:

Формулы приведения:

sin φ

- sin α

cos α

cos α

sin α

- sin α

- cos α

- cos α

- sin α

sin α

cos φ

cos α

sin α

- sin α

- cos α

- cos α

- sin α

sin α

cos α

cos α

tg φ

- tg α

ctg α

- ctg α

- tg α

tg α

ctg α

- ctg α

- tg α

tg α

ctg φ

- ctg α

tg α

- tg α

- ctg α

ctg α

tg α

- tg α

- ctg α

ctg α

Рассмотрим сначала достаточно простые задания на применение формул тригонометрии.

Пример 2.1.

Вычислить значение sin α, если cos α = 0,3, α — угол в первой четверти.

Решение

Применим основное тригонометрическое тождество, связывающее тригонометрические функции .

Так как по условию задачи cos α = 0,3, то cos2α = 0,09. Значит, sin2α + 0,09 = 1, sin2α = 1 – 0,09 = 0,91. Решая уравнение sin2α = 0,91, получаем два случая (), из которых, обращая внимание на то, какой четверти принадлежит искомый угол, следует выбрать один. Вспомним, что в первой четверти все тригонометрические функции имеют знак «+». Следовательно, .

Ответ: 

Пример 2.2.

Вычислите значение tg α, если ctg α = 0,2.

Решение

Воспользуемся формулой, связывающей тригонометрические функции y = tg α, y = ctg α : tg α ctg α = 1. Подставляя заданное в условии значение 0,2, получаем, что tg α 0,2 = 1, откуда tg α = 5.

Ответ: 

Пример 2.3.

Упростите выражения;

Решение

Данные задания — на применение формул сложения.

Ответ: 

Пример 2.4.

Вычислите:

Решение

Ответ: 

Отдельную группу заданий этого типа составляют задания на вычисление одних тригонометрических функций по известным другим.

Пример 2.5.

Известно, что sin α – cos α = 0,3. Найти:

Решение

Ответ:

Пример 2.6.

Найти tgα, если

Решение

Проверкой можно убедиться, что при cos α = 0 приведенное равенство неверно. Поэтому следует разделить числитель и знаменатель дроби на cos α (на основании основного свойства дроби):

, следовательно, тогда:

раскрывая скобки, приведем далее подобные слагаемые:

3tgα + 4 = 5tgα - 10, 2tgα = 14, получаем, что tgα = 7.

Ответ: 

Пример 2.7.

Вычислить cos α, если cos2α = 3/4 и

Решение

Как известно, . Выясним, в каких пределах лежит угол α и какой знак при этом имеет его косинус. Преобразуем заданное в условии задачи двойное неравенство. Разделив одновременно все три части двойного неравенства на 2, получим:

, то есть угол α располагается во второй четверти и, следовательно, cos α < 0.

В приведенной выше формуле выберем знак «минус»:

Ответ: 

Комментарий. Следующая группа заданий — вычисление значений различных тригонометрических выражений с использованием тригонометрических формул.

Пример 2.8.

Найти значение выражения: .

Выполним упрощение каждой дроби по отдельности.

С целью сокращения дроби воспользуемся формулой «разность кубов» и получим:

.

Рассмотрим далее выражение . Нужно заметить, что первое третье слагаемые в сумме дают единицу в силу основного тригонометрического тождества. Таким образом:

.

Обратимся далее к преобразованию второй дроби. Применим одну из формул приведения: . Поэтому:

Тогда .

Окончательно получаем:

Ответ: 

Пример 2.9.

Вычислить sin10° sin30° sin50° sin70°.

Используем формулу преобразования произведения тригонометрических функций в сумму: sin10° sin50° = 1/2 (cos40° - cos60°) = 1/2 cos 40° - 1/4. Подставим в первоначальное произведение это выражение и учтем, что sin30° = 1/2, получаем:

Ответ: 

Комментарий. Для выполнения аналогичных заданий необходимо знание не только тригонометрических формул, но и табличных значений тригонометрических функций.

Рассмотрим далее примеры упрощения тригонометрических выражений с произвольным аргументом.

Пример 2.10.

Упростить выражение: .

Так как числитель заданной дроби имеем достаточно простой вид, начнем с упрощения знаменателя. Для этого применим представление :

.

Приведем полученную разность дробей к общему знаменателю:

.

Следовательно,

Ответ: 

Пример 2.11.

Доказать тождество при

Комментарий. Задания на доказательство тождеств вполне можно воспринимать как задания на упрощение выражений, причем с готовым ответом в виде более простой и компактной части равенства.

Решение

В частности, в данном примере попробуем упростить левую часть, чтобы получить такое же выражение, как справа. Для этого помножим числитель и знаменатель подкоренного выражения на 1 + sin α:

.

Вспомнив, что , получаем

Исследуем далее знак числителя и знаменателя подмодульного выражения:

sin α ≥ -1, тогда 1 + sin α ≥ 0 поэтому ;

при следовательно,

Таким образом:

Аналогичным образом преобразуем второе слагаемое левой части:

Тогда ,

что и требовалось доказать.

Пример 2.12.

Найти значение следующих тригонометрических выражений: sin 2α, cos 2α, tg 2α, если .

Решение

Выпишем формулы для вычисления искомых функций:

.

Из основного тригонометрического тождества вычислим:

Далее найдем значения искомых выражений:

Ответ: 

Пример 2.13.

Доказать тождество .

Решение

Приведем левую часть к 1:

.

Тождество доказано.

Пример 2.14.

Вычислить значение выражения:

.

Решение

Обратим вниманием, что

Далее, используя формулы приведения, получим:

Воспользуемся табличными значениями и свойствами тригонометрических функций:

Итак, значение выражения равно 0.

Ответ: 

Комментарий. Для выполнения заданий, связанных с обратными тригонометрическими функциями, нужно, во-первых, четко помнить определения этих понятий:

Удобно при решении таких задач сделать замену (например, α = arcsin x) и работать с более привычным объектом — углом α, лежащем в первой или четвертой четверти тригонометрического круга, синус которого равен х. При этом выясняется, что задача намного проще, чем казалось вначале.

Пример 2.15.

Вычислить cos(4arctg 5).

Решение

Пусть α = arctg5, тогда tg α = 5. Требуется найти cos4α. Вычислим вначале cos2α, используя универсальную подстановку:

Тогда получаем, что:

Ответ: 

Пример 2.16.

Выразить через все обратные функции

Решение

Пусть . Угол α лежит в четвертой четверти, следовательно, cos α > 0.

Найдем все тригонометрические функции угла:

В четвертой четверти находятся арктангенсы отрицательных чисел, поэтому можно утверждать, что .

Но , так как арккосинусы положительных чисел принадлежат первой четверти. В силу четности косинуса cos (-α) = cos α, при этом , то есть , тогда .

Арккотангенсы отрицательных чисел расположены во второй четверти. Например, , следовательно, . Таким образом, угол α выражен через все обратные функции.

Ответ: 

Пример 2.17.

Найти arcsin (sin 12).

Решение

По условию задачи требуется найти угол, синус которого равен синусу угла в 12 радиан и который принадлежит промежутку . Заметим, что , поэтому .

Поскольку , угол 12 - 4π является искомым углом: его синус равен sin 12, и он находится в области возможных значений арксинуса.

Ответ: 

Пример 2.18.

Вычислить

Решение

Введем два угла: Оба они лежат в первой четверти, значит, все их тригонометрические функции положительны. Мы знаем, что . Требуется найти синус суммы этих углов, а для этого нужно знать их синусы и косинусы.

Во-первых,

Во-вторых, .

Следовательно,

Ответ: