3.
Тождественные преобразования показательных и логарифмических выражений

Комментарий. Для выполнения заданий этой группы требуется хорошо знать свойства логарифмов и уметь их применять. Эта работа очень полезна для подготовки к решению логарифмических и показательных уравнений и неравенств. Рассмотрим далее задания, связанные с упрощением показательных и логарифмических выражений.

Формулы для справок

Вспомним основные свойства логарифмов.

  1. .

    Комментарий. Логарифм единицы по любому основанию равен нулю. Для того, чтобы убедиться в истинности данной формулы, достаточно вспомнить, что любое число (кроме нуля) в нулевой степени равно единице.

  2. .

    Комментарий. Логарифм равен единице в случае равенства чисел (выражений) — основания логарифма и выражения, стоящего под логарифмом.

  3. .

    Комментарий. Представленная формула является одним из вариантов записи определения логарифма.

  4. .

  5. .

  6. .

  7. .

  8. .

    Комментарий.

    Данная формула называемая формулой перехода к новому основанию, имеет два важных следствия. Приравняем в формуле , тогда . Рассмотрим числитель полученной дроби. Поставим вопрос: в какую степень следует возвести число b, чтобы получить число b. Ответ — в первую степень, т.е. числитель рассматриваемой дроби равен единице. Таким образом, . В ряде задач полезно бывает полученную формулу записать в преобразованном виде: .

  9. .

    Комментарий. Предполагается, что во всех представленных формулах параметры принимают допустимые значения.

Пример 3.1

Вычислить

Решение

Представим в виде степени числа 5, тогда

Далее воспользуемся правилом умножения степеней одинаковым основанием (при умножении степеней с одинаковым основанием показатели складываются):

.

Преобразуем полученную в процессе решения разность логарифмов (по одному основанию) и применим определение логарифма (зададим вопрос: В какую степень следует возвести основание логарифма 3, чтобы получить число, стоящее под логарифмом — 9?):

Ответ: 25.

Пример 3.2.

Упростить выражение

Решение

Упростим показатель степени подкоренного выражения:

Тогда

Ответ: 27.

Пример 3.3.

Упростить выражение:

Решение

Вначале упростим логарифмируемое выражение. Если Вы уже занимались упрощением алгебраических выражений, то вид первого множителя в знаменателе вызовет предположение, что перед нами полный квадрат. Действительно, Тогда:

Следовательно,

Ответ: 1/2.

Пример 3.4.

Найти значение выражения

Решение

Разделим на знаменатель каждое слагаемое числителя по отдельности:

Переходя далее в каждом слагаемом к новому основанию 18, получаем, что:

Преобразуем далее сумму логарифмов с одинаковым основанием в логарифм произведения и используем определение логарифма:

Ответ: 1.

Пример 3.5.

Вычислить

Решение

Для преобразования данного выражения перейдем во всех логарифмах к основанию 4:

.

Тогда выражение принимает вид:

Далее разложим на множители логарифмируемые выражения, выделяя в каждом из них множитель вида 4n :

28 = 4 7, 112 = 16 7 = 42   7, 448 = 64 7 = 43   7.

Продолжим преобразование выражения, используя свойства логарифмов:

Ответ: 2.

Пример 3.6.

Вычислить

Решение

Представим числа 2 и 1 в виде: Тогда

Ответ: 2.

Пример 3.7.

Найти если

Решение

Обратим внимание на то, что в каждом логарифме (либо в основании, либо в аргументе) присутствует множитель 7. Поэтому перейдем к основанию 7 во всех логарифмах:

Обратим внимание, что , тогда:

Следовательно, для вычисления этого логарифма нужно знать значения и Воспользуемся формулами перехода к новому основанию:

Подставим далее найденные значения в преобразованное исходное выражение:

Ответ: 

Пример 3.8.

Известно, что лежит между числами 8 и 13, а принимает целые значения. Найти количество этих значений.

Решение

Перейдем в обоих логарифмах к основанию b.

Для этого воспользуемся сначала формулой «логарифм частного»: . Обратим далее внимание, что .

Получаем, что

Решим методом интервалов неравенство: .

Для этого перейдем к систем нестрогих неравенств: .

Рассматривая каждое из записанных неравенств отдельно и впоследствии находя решение как пересечение множеств (решений первого и второго неравенств), получаем:

Выполним преобразования полученного двойного неравенства.

Прибавим 1 ко всем частям неравенства: Поскольку его значения задаются неравенством:

или

Следовательно, может принимать 6 целых значений – от 11 до 16.

Ответ: 6.