Вычислительные устройства. Краткая история вопроса
Рассмотрим историю развития вычислительных средств и методов «в лицах» и без. В нижеприведенной таблице отражены узловые моменты этого процесса.
Таблица 1
Краткий экскурс в историю вычислительных методов, приборов, автоматов и машин
Джон Непер (1550-1617) |
Шотландец Джон Непер в 1614-м году опубликовал “Описание удивительных таблиц логарифмов”. Он обнаружил, что сумма логарифма чисел a и b равна логарифму произведения этих чисел. Поэтому действие умножения сводилось к простой операции сложения. Также им разработан инструмент перемножения чисел - “костяшки Непера”. Он состоял из набора сегментированных стерженьков, которые можно было располагать таким образом, что, складывая числа, в прилегающих друг к другу по горизонтали сегментах, получали результат их умножения. “Костяшки Непера” вскоре были вытеснены логарифмической линейкой и другими вычислительными устройствами (в основном механического типа). Таблицы Непера, расчет которых требовал очень много времени, были позже “встроены” в удобное устройство, ускоряющее процесс вычисления, - логарифмическую линейку (Р. Биссакар, конец 1620 года). |
|
Вильгельм Шиккард (1592 - 1636) |
Считалось, что первую механическую счетную машину изобрел великий французский математик и физик Б.Паскаль в 1642 году. Однако в 1957 году Ф. Гаммер (ФРГ, директор Кеплеровского научного центра) обнаружил доказательства создания механической вычислительной машины приблизительно за два десятилетия до изобретения Паскаля Вильгельмом Шиккардом. Он назвал ее “часы для счета”. Машина предназначалась для выполнения четырех арифметических действий и состояла из частей: суммирующее устройство; множительное устройство; механизм для промежуточных результатов. Суммирующее устройство состояло из зубчатых передач и представляло простейшую форму арифмометра. Предложенная схема механического счета считается классической. Однако эту простую и эффективную схему пришлось изобретать заново, так как сведения о машине Шиккарда не стали всеобщим достоянием. |
|
Блэз Паскаль (1623-1662) |
В 1642 году, когда Паскалю было 19 лет, была изготовлена первая действующая модель суммирующей машины. Через несколько лет Блэз Паскаль создал механическую суммирующую машину (“паскалину”), которая позволяла складывать числа в десятичной системе счисления. В этой машине цифры шестизначного числа задавались путем соответствующих поворотов дисков (колесиков) с цифровыми делениями, результат операции можно было прочитать в шести окошках – по одному на каждую цифру. Диск единиц был связан с диском десятков, диск десятков – с диском сотен и т.д. Другие операции выполнялись при помощи довольно неудобной процедуры повторных сложений, и в этом заключался основной недостаток “паскалины”. Всего приблизительно за десятилетие он построил более 50 различных вариантов машины. Изобретенный Паскалем принцип связанных колес явился основой, на которой строилось большинство вычислительных устройств на протяжении следующих трех столетий. |
|
Готфрид Вильгельм Лейбниц (1646-1716) |
В 1672 году, находясь в Париже, Лейбниц познакомился с голландским математиком и астрономом Христианом Гюйгенсом. Видя, как много вычислений приходится делать астроному, Лейбниц решил изобрести механическое устройство для расчетов. В 1673 году он завершил создание механического калькулятора. Развив идеи Паскаля, Лейбниц использовал операцию сдвига для поразрядного умножения чисел. Сложение производилось на нем по существу так же, как и на “паскалине”, однако Лейбниц включил в конструкцию движущуюся часть (прообраз подвижной каретки будущих настольных калькуляторов) и ручку, с помощью которой можно было крутить ступенчатое колесо или - в последующих вариантах машины - цилиндры, расположенные внутри аппарата. |
|
Жозеф Мари Жаккар (1775 - 1834) |
Развитие вычислительных устройств связано с появлением перфорационных карт и их применением. Появление же перфорационных карт связано с ткацким производством. В 1804 году инженер Жозеф Мари Жаккар построил полностью автоматизированный станок (станок Жаккара), способный воспроизводить сложнейшие узоры. Работа станка программировалась при помощи колоды перфокарт, каждая из которых управляла одним ходом челнока. Переход к новому рисунку происходил заменой колоды перфокарт. |
|
Чарльз Бэббидж (1791-1871) |
Он обнаружил погрешности в таблицах логарифмов Непера, которыми широко пользовались при вычислениях астрономы, математики, штурманы дальнего плавания. В 1821 году приступил к разработке своей вычислительной машины, которая помогла бы выполнить более точные вычисления. В 1822 году была построена Разностная машина (пробная модель), способная рассчитывать и печатать большие математические таблицы. Это было очень сложное, большое устройство и предназначалось для автоматического вычисления логарифмов. Работа модели основывалась на принципе, известном в математике как "метод конечных разностей": при вычислении многочленов используется только операция сложения и не выполняется умножение и деление, которые значительно труднее поддаются автоматизации. В последующем он пришел к идее создания более мощной - Аналитической машины. Она не просто должна была решать математические задачи определенного типа, а выполнять разнообразные вычислительные операции в соответствии с инструкциями, задаваемыми оператором. По замыслу это не что иное, как первый универсальный программируемый компьютер. Аналитическая машина в своем составе должна была иметь такие компоненты, как “мельница” (арифметическое устройство по современной терминологии) и “склад” (память). Инструкции (команды) вводились в Аналитическую машину с помощью перфокарт (использовалась идея программного управления Жаккара с помощью перфокарт). Шведский издатель, изобретатель и переводчик. Пер Георг Шойц воспользовавшись советами Баббеджа, построил видоизмененный вариант этой машины. 1855 году Разностная машина Шойца была удостоена золотой медали на Всемирной выставке в Париже. В дальнейшем один из принципов, лежащих в основе идеи Аналитической машины, - использование перфокарт - нашел воплощение в статистическом табуляторе, построенном американцем Германом Холлеритом (для ускорения обработки результатов переписи населения в США в 1890 году). |
|
Огаста Ада Байрон (графиня Лавлейс) (1815-1852) |
Графиня Ада Лавлейс, дочь поэта Байрона, совместно с Ч. Бэббиджем работала над созданием программ для его счетных машин. Ее работы в этой области были опубликованы в 1843 году. Однако в то время считалось неприличным для женщины издавать свои сочинения под полным именем и, Лавлейс поставила на титуле только свои инициалы. В материалах Бэббиджа и комментариях Лавлейс намечены такие понятия, как подпрограмма и библиотека подпрограмм, модификация команд и индексный регистр, которые стали употребляться только в 50-х годах нашего века. Сам термин библиотека был введен Бэббиджем, а термины рабочая ячейка и цикл предложила Ада Лавлейс. “Можно с полным основанием сказать, что Аналитическая машина точно так же плетет алгебраические узоры, как ткацкий станок Жаккарда воспроизводит цветы и листья”, - писала графиня Лавлейс. Она фактически была первой программисткой (в ее честь был назван язык программирования Ада). |
|
Джордж Буль (1815-1864) |
Дж.
Буль по праву считается отцом математической логики. Его именем назван раздел
математической логики - булева алгебра. |
|
Пафнутий Львович Чебышев (1821 - 1894) |
Им была разработана также теория машин и механизмов, написан ряд работ, посвященных синтезу шарнирных механизмов. Среди многочисленных изобретенных им механизмов имеется несколько моделей арифмометров, первая из которых была сконструирована не позднее 1876 года. Арифмометр Чебышева для того времени был одной из самых оригинальных вычислительных машин. В своих конструкциях Чебышев предложил принцип непрерывной передачи десятков и автоматический переход каретки с разряда на разряд при умножении. Оба эти изобретения вошли в широкую практику в 30-е годы XX века в связи с применением электропривода и распространением полуавтоматических и автоматических клавишных вычислительных машин. С появлением этих и других изобретений стало возможно значительно увеличить скорость работы механических счетных устройств. |
|
Алексей Николаевич Крылов (1863 - 1945) |
Русский кораблестроитель, механик, математик, академик АН СССР. В 1904 году он предложил конструкцию машины для интегрирования обыкновенных дифференциальных уравнений. В 1912 году такая машина была построена. Это была первая интегрирующая машина непрерывного действия, позволяющая решать дифференциальные уравнения до четвертого порядка. |
|
(1845 - 1905) |
Выходец из Швеции Вильготд Теофил Однер в 1869 году, приехал в Петербург. Некоторое время он работал на заводе “Русский дизель” на Выборгской стороне, на котором в 1874 году был изготовлен первый образец его арифмометра. Созданные на базе ступенчатых валиков Лейбница первые серийные арифмометры имели большие размеры в первую очередь потому, что на каждый разряд нужно было выделять отдельный валик. Однер вместо ступенчатых валиков применил более совершенные и компактные зубчатые колеса с меняющимся числом зубцов - (колеса Однера). В 1890 году Однер получает патент на выпуск арифмометров и, в этом же году было продано 500 арифмометров (очень большое количество по тем временам). Арифмометры в России назывались: “Арифмометр Однера”, “Оригинал-Однер”, “Арифмометр системы Однер” др. В России до 1917 года было выпущено примерно 23 тыс. арифмометров Однера. После революции производство арифмометров было налажено на Сущевском механическом заводе им. Ф. Э. Дзержинского в Москве. С 1931 года они стали называться - арифмометры “Феликс”. Далее в нашей стране были созданы модели арифмометров Однера с клавишным вводом и электроприводом. |
|
Герман Холлерит (1860 - 1929) |
После окончания Колумбийского университета поступает на работу в контору по переписи населения в Вашингтоне. В это время приступили к исключительно трудоемкой (длившейся семь с половиной лет) ручной обработке данных, собранных в ходе переписи населения в 1880 году. К 1890 году Холлерит завершил разработку системы табуляции на базе применения перфокарт. На каждой карте имелось12 рядов, в каждом из которых можно было пробить по 20 отверстий, они соответствовали таким данным как возраст, пол, место рождения, количество детей, семейное положение и прочим сведениям, включенным в вопросник переписи. Содержимое заполненных формуляров переносилось на карты путем соответствующего перфорирования. Перфокарты загружались в специальные устройства, соединенные с табуляционной машиной, где они нанизывались на ряды тонких игл, по одной игле на каждую из 240 перфорируемых позиций на карте. Когда игла попадала в отверстие, она замыкала контакт в соответствующей электрической цепи машины. Полный статистический анализ результатов занял два с половиной года (втрое быстрее по сравнению с предыдущей переписью). Впоследствии Холлерит организовал фирму «ComputerTabulatingRecording» (CTR). Молодой коммивояжер этой компании Том Уотсон первым увидел потенциальную прибыльность продажи счетных машин на основе перфокарт американским бизнесменам. Позднее он возглавил компанию и в 1924 году переименовал ее в корпорацию «International Business Machines» (IBM). |
|
Ванневар Буш (1890-1974) |
В 1930 году построил механическое вычислительное устройство “дифференциальный анализатор”. Это была машина, на которой можно было решать сложные дифференциальные уравнения. Однако она обладала многими серьезными недостатками. Прежде всего, это гигантские размеры. Механический анализатор Буша представлял собой сложную систему валиков, шестеренок и проволок, соединенных в серию больших блоков, которые занимали целую комнату. При постановке задачи машине оператор должен был вручную подбирать множество шестереночных передач. На это уходило обычно 2 - 3 дня. Позднее В. Буш предложил прототип современного гипертекста - проект "memex" ("MEMory EXtention") как автоматизированное бюро, в котором человек хранил бы свои книги, записи, любую получаемую им информацию таким образом, чтобы в любой момент воспользоваться ее с максимальной быстротой и удобством. Фактически это должно было быть сложное устройство, снабженное клавиатурой и прозрачными экранами, на которые бы проецировались тексты и изображения, хранящиеся на микрофильмах. В "memex" следовало установить логические и ассоциативные связи между любыми двумя блоками информации. В идеале речь идет о громадной библиотеке, универсальной информационной базе данных. |
|
Атанасофф Джон Винсент (1903-1995) |
Профессор физики, автор первого проекта цифровой вычислительной машины, на основе двоичной, а не десятичной системы счисления. Простота двоичной системы счисления в сочетании с простотой физического представления двух символов (0, 1) вместо десяти (0,1,…,9) в электрических схемах компьютера перевешивала неудобства, связанные с необходимостью перевода из двоичной системы в десятичную и обратно. Кроме того, применение двоичной системы счисления способствовало уменьшению размеров вычислительной машины, и снизила бы ее себестоимость. В 1939 году Атанасофф построил модель устройства и стал искать финансовой помощи для продолжения работы. Машина Атанасоффа была практически готова в декабре 1941 года, но находилась в разобранном виде. В связи с началом второй мировой войны все работы по реализации этого проекта прекратились. Лишь в 1973 г. приоритет Атанасоффа как автора первого проекта такой архитектуры вычислительной машины был подтвержден решением федерального суда США. |
|
Говард Эйкен Марк -1 |
В 1937 году предложил проект создания большой счетной машины и искал людей, согласных профинансировать эту идею. Спонсором выступил Томас Уотсон, президент корпорации IBM: его вклад в проект составил около 500 тыс. долларов США. Проектирование новой машины «Марк-1», основанной на электромеханических реле, началось в 1939 году в лабораториях нью-йоркского филиала IBM и продолжалось до 1944 года. Готовый компьютер содержал около 750 тыс. деталей и весил 35 тонн. Машина оперировала двоичными числами до 23 разрядов и перемножала два числа максимальной разрядности примерно за 4 секунды. Поскольку создание «Марк-1» длилось достаточно долго, пальма первенства досталась не ему, а релейному двоичному компьютеру Z3 Конрада Цузе, построенному в 1941 году. Стоит отметить, что машина Z3 была значительно меньше машины Эйкена и к тому же дешевле в производстве. |
|
Конрад Цузе (1910-1995)
Машина Z-3 |
В 1934 году, будучи студентом технического вуза (в Берлине), не имея ни малейшего представления о работах Ч. Бэббиджа, К. Цузе начал разрабатывать универсальную вычислительную машину, во многом подобную Аналитической машине Бэббиджа. В 1938 году он завершил постройку машины, занимавшую площадь 4 кв.м., названную Z1 (по-немецки его фамилия пишется как Zuse). Это была полностью электромеханическая программируемая цифровая машина. Она имела клавиатуру для ввода условий задач. Результаты вычислений высвечивались на панели с множеством маленьких лампочек. Ее восстановленная версия хранится в музее Verker und Technik в Берлине. Именно Z1 в Германии называют первым в мире компьютером. Позднее Цузе стал кодировать инструкции для машины, пробивая отверстия в использованной 35-миллиметровой фотопленке. Машина, работавшая с перфорированной лентой, получила название Z2. В 1941 г. Цузе построил программно-управляемую машину, основанную на двоичной системе счисления - Z3. Эта машина по многим своим характеристикам превосходила другие машины, построенные независимо и параллельно в иных странах. В 1942 году Цузе совместно с австрийским инженером-электриком Хельмутом Шрайером предложили создать компьютер принципиально нового типа - на вакуумных электронных лампах. Эта машина должна была работать в тысячу раз быстрее, чем любая из машин, имевшихся в то время в Германии. Говоря о потенциальных сферах применения быстродействующего компьютера, Цузе и Шрайер отмечали возможность его использования для расшифровки закодированных сообщений (такие разработки уже велись в различных странах). |
|
Тьюринг Алан (1912-1954) |
Английский математик, дал математическое определение алгоритма через построение, названное машиной Тьюринга. В период второй мировой войны немцы использовали аппарат “Enigma” для шифровки сообщений. Без ключа и схемы коммутации (немцы их меняли три раза в день) расшифровать сообщение было невозможно. С целью раскрытия секрета британская разведка собрала группу блестящих и несколько эксцентричных ученых. Среди них был математик Алан Тьюринг. В конце 1943 года группа сумела построить мощную машину (вместо электромеханических реле в ней применялись около 2000 электронных вакуумных ламп). Машину назвали “Колосс”. Перехваченные сообщения кодировались, наносились на перфоленту и вводились в память машины. Лента вводилась посредством фотоэлектрического считывающего устройства со скоростью 5000 символов в секунду. Машина имела 5 таких считывающих устройств. В процессе поиска соответствия (расшифровки) машина сопоставляла зашифрованное сообщение с уже известными кодами “Enigma” (по алгоритму работы машины Тьюринга). Работа группы до сих пор остается засекреченной. О роли Тьюринга в работе группы можно судить по следующему высказыванию члена этой группы - математика И. Дж. Гуда. Он отметил, что “ Я не хочу сказать, что мы выиграли войну благодаря Тьюрингу, но беру на себя смелость сказать, что без него мы могли бы ее и проиграть”. Машина “Колосс” была ламповая (крупный шаг вперед в развитии вычислительной техники) и специализированная (расшифровка секретных кодов). |
|
Джон Мочли (1907 - 1980) Преспер Экерт (род. в 1919) Эниак |
Первой ЭВМ считается машина ЭНИАК (ENIAC, ElectronicNumerialIntegratorandComputer - электронный цифровой интегратор и вычислитель). Ее авторы, американские ученые Дж. Мочли и Преспер Экерт, работали над ней с 1943 по 1945 годы. Она предназначалась для расчета траекторий полетов снарядов. Машина представляла собой сложнейшее для середины XX века инженерное сооружение длиной более 30 м., объемом 85 куб. м, массой 30 т. В ЭНИАКе были использованы 18 тыс. электронных ламп, 1500 реле, машина потребляла около 150 кВт. Далее возникла идея создания машины с программным обеспечением, хранимым в памяти машины, что изменило бы принципы организации вычислений и подготовило почву для появления современных языков программирования (ЭДВАК - Электронный Автоматический Вычислитель с дискретными переменными, EDVAC-ElectronicDiscretVariableAutomaticComputer). Эта машина была создана в 1950 году. В более емкой внутренней памяти содержались и данные и программа. Программы записывались электронным способом в специальных устройствах - линиях задержки. Самое главное было то, что в “ЭДВАК” данные кодировались не в десятичной системе, а в двоичной (сократилось количество используемых электронных ламп). Дж. Мочли и П. Экерт, после создания своей собственной компании, задались целью создать универсальный компьютер для широкого коммерческого применения - “ЮНИВАК” (UNIVAC, UniversalAutomaticComputer - универсальный автоматический компьютер). Примерно за год до того, как первый “Юнивак” вступил в эксплуатацию в Бюро переписи населения в США, партнеры оказались в тяжелом финансовом положении и вынуждены были продать свою компанию фирме “Ремингтон Рэнд”. Однако “Юнивак” не стал первым коммерческим компьютером. Им стала машина ЛЕО (LEO, Lyons’ ElectronicOffice), которая применялась в Англии для расчета зарплаты работникам чайных магазинов (фирма “Лайонс”). В 1973 году, - федеральный суд США признал их авторские права на изобретение электронного цифрового компьютера недействительными, а идеи - заимствованными у Дж. Атанасоффа. |
|
Джон фон Нейман (1903 - 1957) |
Работая в группе Дж. Мочли и П. Экерта, фон Нейман подготовил отчет - “Предварительный доклад о машине “ЭДВАК” на 101 странице, в котором обобщил планы работы над машиной. Это была первая работа по цифровым электронным компьютерам, с которой познакомились определенные круги научной общественности (по соображениям секретности работы в этой области не публиковались). С этого момента компьютер был признан объектом, представлявшим научный интерес. В своем докладе фон Нейман выделил и детально описал пять ключевых компонентов того, что ныне называют “архитектурой фон Неймана” современного компьютера. Для того, чтобы компьютер был эффективным и универсальным инструментом он должен включать следующие структуры: центральное арифметико-логическое устройство, центральное устройство управления, запоминающее устройство (память), а также устройство ввода-вывода информации. Эта система должна работать с двоичными числами, быть электронным, а не механическим устройством и выполнять операции последовательно, одну за другой. В нашей стране, независимо от фон Неймана, были сформулированы более детальные и полные принципы построения электронных цифровых вычислительных машин (Сергей Алексеевич Лебедев). |
|
Сергей Алексеевич Лебедев (1902 - 1974)
МЭСМ
ЭВМ БЭСМ-6
|
В 1946 году С. А. Лебедев становится директором института электротехники и в его состав вводит также свою лабораторию моделирования и регулирования. В 1948 году С. А. Лебедев ориентировал свою лабораторию на создание МЭСМ (малая электронная счетная машина). МЭСМ была в начале задумана как модель (первая буква в аббревиатуре МЭСМ) Большой электронной счетной машины (БЭСМ). Однако в процессе ее создания стала очевидной целесообразность превращения ее в малую ЭВМ. Из-за засекреченности работ, проводимых в области вычислительной техники, соответствующих публикаций в открытой печати не было. Основы построения ЭВМ, разработанные С. А. Лебедевым независимо от Дж. фон Неймана заключаются в следующем: 1. В состав ЭВМ должны входить устройства арифметики, памяти, ввода-вывода информации, управления; 2. Программа вычислений кодируется и хранится в памяти подобно числам; 3. Для кодирования чисел и команд следует использовать двоичную систему счисления: 4. Вычисления должны осуществляться автоматически на основе хранимой в памяти программы и операций над командами; 5. Помимо арифметических операций вводятся также логические - сравнения, условного и безусловного переходов, конъюнкция, дизъюнкция, отрицание; 6. Память строится по иерархическому принципу; 7. Для вычислений используются численные методы решения задач. 25 декабря 1951 года МЭСМ была принята в эксплуатацию. Это была первая в СССР быстродействующая электронная цифровая машина. В 1948 году создается Институт точной механики и вычислительной техники (ИТМ и ВТ) АН СССР, которому правительство поручило разработку новых средств вычислительной техники и С. А. Лебедев приглашается заведовать лабораторией № 1 (1951 год). Когда БЭСМ была готова (1953 год), она ничуть не уступала новейшим американским образцам. С 1953 года до конца своей жизни С. А. Лебедев был директором ИТМ и ВТ АН СССР, избран действительным членом АН СССР и возглавил работы по созданию нескольких поколений ЭВМ. В начале 60-х годов создается первая ЭВМ из серии больших электронных счетных машин (БЭСМ) - БЭСМ-1. При создании БЭСМ-1 были применены оригинальные научные и конструкторские решения. Эта ЭВМ была тогда самой производительной машиной в Европе (8-10 тысяч операций в секунду) и одной из лучших в мире. Под руководством С.А. Лебедева были созданы и внедрены в производство еще две ламповые ЭВМ - БЭСМ-2 и М-20. В 60-х годах были созданы полупроводниковые варианты М-20: , М-220 и М-222, а также БЭСМ-3М и БЭСМ-4. При проектировании БЭСМ-6 впервые был применен метод предварительного имитационного моделирования.(сдача в эксплуатацию было произведено в 1967 году). С. А. Лебедев одним из первых понял огромное значение совместной работы математиков и инженеров в создании вычислительных систем. По инициативе С. А. Лебедева все схемы БЭСМ-6 были записаны формулами булевой алгебры. Это открыла широкие возможности для автоматизации проектирования и подготовки монтажной и производственной документации. |
|
IBM/360
ЕС 1045 |
Невозможно пропустить ключевой этап в развитии вычислительных средств и методов, связанный с деятельностью фирмы IBM. Исторически первые ЭВМ классической структуры и состава - Computer Installation System/360 (фирменное наименование - “Вычислительная установка системы 360”, в дальнейшем известная как просто IBM/360) были выпущены в 1964 г., и с последующими модификациями (IBM/370, IBM/375) поставлялись вплоть до середины 80-х годов, когда под влиянием микроЭВМ (ПК) не начали постепенно сходить со сцены. ЭВМ данной серии послужили основой для разработки в СССР и странах-членах СЭВ т.н. Единой системы ЭВМ (ЕС ЭВМ), которые в течение нескольких десятилетий являлись основой отечественной компьютеризации. Машины включали следующие компоненты: — центральный процессор (32-разрядный), с двухадресной системой команд; — главная (оперативная) память (от 128К до 2 Мбайт); — накопители на магнитных дисках (НМД, МД) со сменными пакетами дисков (например, IBM-2314 - 7,25Мбайт, IBM-2311 - 29Мбайт, IBM 3330 -100Мбайт), аналогичные (иногда - совместимые) устройства известны и для других из вышеупомянутых серий; — накопители на магнитных лентах (НМЛ, МЛ) катушечного типа, ширина ленты 0,5 дюйма, длина от 2400 футов (720 м) и менее (обычно 360 и 180 м), плотность записи от 256 байт на дюйм (обычная) и большая в 2 - 8 раз (повышенная). Соответственно, рабочая емкость накопителя определялась размером катушки и плотностью записи и достигала 160 Мбайт на бобину МЛ. — устройства печати - построчные печатающие устройства барабанного типа, с фиксированным (обычно 64 или 128 знаков) набором символов, включающих заглавную латиницу и кириллицу (либо заглавную и строчную латиницу) и стандартное множество служебных символов; вывод информации осуществлялся на бумажную ленту шириной 42 или 21 см со скоростью до 20 строк/с; — терминальные устройства (видеотерминалы, а первоначально - электрические пишущие машинки), предназначенные для интерактивного взаимодействия с пользователем (IBM 3270, DEC - VT-100 и пр.), подключаемые к системе для выполнения функций управления вычислительными процессом (консоль оператора - 1 - 2 шт на ЭВМ) и интерактивной отладки программ и обработки данных (терминал пользователя - от 4 до 64 шт на ЭВМ). Перечисленные стандартные наборы устройств ЭВМ 60-х - 80-х годов и их характеристики приведены здесь как историческая справка для читателя, который может их самостоятельно оценить, сравнив с современными и известными ему данными. Фирмой IBM была предложена в качестве оболочки ЭВМ IBM/360 первая функционально полноценная ОС - OS/360. Разработка и внедрение ОС позволили разграничить функции операторов, администраторов, программистов, пользователей, а также существенно (в десятки и сотни раз) повысить производительность ЭВМ и степень загрузки технических средств. Версии OS/360/370/375 - MFT (мульти-программирование с фиксированным количеством задач), MVT (с переменным количеством задач), SVS (система с виртуальной памятью), SVM (система виртуальных машин) - последовательно сменяли друг друга и во многом определили современные представления о роли ОС. |
|
Билл Гейтс и Пол Аллен
Альтаир |
1974 г. Фирма Intel разработала первый универсальный восьмиразрядный микропроцессор 8080 с 4500 транзисторами. Эдвард Робертс, молодой офицер ВВС США, инженер-электронщик, построил на базе процессора 8080 микрокомпьютер Альтаир, имевший огромный коммерческий успех, продававшийся по почте и широко использовавшийся для домашнего применения. В 1975 г. Молодой программист Пол Аллен и студент Гарвардского университета Билл Гейтс реализовали для Альтаира язык Бейсик. Впоследствии они основали фирму Майкрософт (Microsoft). |
|
Стивен Джобс и Стефан Возняк Apple—1 Lisa |
1976 г. Студенты Стив Возняк и Стив Джобс, устроив мастерскую в гараже, реализовали компьютер Apple—1, положив начало корпорации Apple. 1983 г. Корпорация Apple Computers построила персональный компьютер Lisa — первый офисный компьютер, управляемый манипулятором мышь. |
|
Назад к разделу "1. Вычислительные приборы и устройства. Алгоритмы и вычисления."